Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.062
Filtrar
1.
Cancer Res ; 84(7): 958-960, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558132

RESUMO

The extracellular matrix (ECM) has always been studied in the context of the structural support it provides tissues. However, more recently, it has become clear that ECM proteins do more to regulate biological processes relevant to cancer progression: from activating complex signaling pathways to presenting soluble growth factors. In 2009, Ulrich and colleagues provided evidence that the physical properties of the ECM could also contribute to glioblastoma tumor cell proliferation and invasion using tunable hydrogels, emphasizing a role for tumor rigidity in central nervous system cancer progression. Here, we will discuss the results of this landmark article, as well as highlight other work that has shown the importance of tissue stiffness in glioblastoma and other tumor types in the tumor microenvironment. Finally, we will discuss how this research has led to the development of novel treatments for cancer that target tumor rigidity. See related article by Ulrich and colleagues, Cancer Res 2009;69:4167-74.


Assuntos
Glioblastoma , Humanos , Glioblastoma/patologia , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proliferação de Células , Hidrogéis/química , Microambiente Tumoral
2.
Nat Commun ; 15(1): 2861, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570505

RESUMO

Tissue integrity is sensitive to temperature, tension, age, and is sustained throughout life by adaptive cell-autonomous or extrinsic mechanisms. Safeguarding the remarkably-complex architectures of neurons and glia ensures age-dependent integrity of functional circuits. Here, we report mechanisms sustaining the integrity of C. elegans CEPsh astrocyte-like glia. We combine large-scale genetics with manipulation of genes, cells, and their environment, quantitative imaging of cellular/ subcellular features, tissue material properties and extracellular matrix (ECM). We identify mutants with age-progressive, environment-dependent defects in glial architecture, consequent disruption of neuronal architecture, and abnormal aging. Functional loss of epithelial Hsp70/Hsc70-cochaperone BAG2 causes ECM disruption, altered tissue biomechanics, and hypersensitivity of glia to environmental temperature and mechanics. Glial-cell junctions ensure epithelia-ECM-CEPsh glia association. Modifying glial junctions or ECM mechanics safeguards glial integrity against disrupted BAG2-proteostasis. Overall, we present a finely-regulated interplay of proteostasis-ECM and cell junctions with conserved components that ensures age-progressive robustness of glial architecture.


Assuntos
Caenorhabditis elegans , Neuroglia , Animais , Caenorhabditis elegans/genética , Astrócitos , Fenômenos Biomecânicos , Proteostase , Matriz Extracelular/metabolismo , Junções Intercelulares
3.
J Phys Condens Matter ; 36(29)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38574682

RESUMO

Cell-matrix adhesions connect the cytoskeleton to the extracellular environment and are essential for maintaining the integrity of tissue and whole organisms. Remarkably, cell adhesions can adapt their size and composition to an applied force such that their size and strength increases proportionally to the load. Mathematical models for the clutch-like force transmission at adhesions are frequently based on the assumption that mechanical load is applied tangentially to the adhesion plane. Recently, we suggested a molecular mechanism that can explain adhesion growth under load for planar cell adhesions. The mechanism is based on conformation changes of adhesion molecules that are dynamically exchanged with a reservoir. Tangential loading drives the occupation of some states out of equilibrium, which for thermodynamic reasons, leads to the association of further molecules with the cluster, which we refer to as self-stabilization. Here, we generalize this model to forces that pull at an oblique angle to the plane supporting the cell, and examine if this idealized model also predicts self-stabilization. We also allow for a variable distance between the parallel planes representing cytoskeletal F-actin and transmembrane integrins. Simulation results demonstrate that the binding mechanism and the geometry of the cluster have a strong influence on the response of adhesion clusters to force. For oblique angles smaller than about 40∘, we observe a growth of the adhesion site under force. However this self-stabilization is reduced as the angle between the force and substrate plane increases, with vanishing self-stabilization for normal pulling. Overall, these results highlight the fundamental difference between the assumption of pulling and shearing forces in commonly used models of cell adhesion.


Assuntos
Matriz Extracelular , Adesões Focais , Adesões Focais/metabolismo , Matriz Extracelular/metabolismo , Adesão Celular/fisiologia , Actinas , Integrinas/metabolismo
4.
J Mech Behav Biomed Mater ; 154: 106498, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38581962

RESUMO

Chitosan (CS) and phloroglucinol (PhG), two extracts abundantly found in marine life, were investigated for their ability to biomodify demineralized dentin by enhancing collagen crosslinks and improving dentin extracellular matrix (ECM) mechanical and biochemical stability. Dentin obtained from non-carious extracted human molars were demineralized with phosphoric acid. Baseline Fourier-transform infrared (FTIR) spectra, apparent flexural elastic modulus (AE) and dry mass (DM) of each specimen were independently acquired. Specimens were randomly incubated for 5 min into either ultrapure water (no-treatment), 1% glutaraldehyde (GA), 1% CS or 1% PhG. Water and GA were used, respectively, as a negative and positive control for collagen crosslinks. Specimens' post-treatment FTIR spectra, AE, and DM were obtained and compared with correspondent baseline measurements. Additionally, the host-derived proteolytic activity of dentin ECM was assessed using hydroxyproline assay (HYP) and spectrofluorometric analysis of a fluorescent-quenched substrate specific for matrix metalloproteinases (MMPs). Finally, the bond strength of an etch-and-rinse adhesive was evaluated after application of marine compounds as non-rinsing dentin primers. Dentin specimens FTIR spectral profile changed remarkably, and their AE increased significantly after treatment with marine compounds. DM variation, HYP assay and fluorogenic substrate analysis concurrently indicated the biodegradation of CS- and PhG-treated specimens was significantly lesser in comparison with untreated specimens. CS and PhG treatments enhanced biomechanical/biochemical stability of demineralized dentin. These novel results show that PhG is a primer with the capacity to biomodify demineralized dentin, hence rendering it less susceptible to biodegradation by host-proteases.


Assuntos
Quitosana , Colagem Dentária , Humanos , Dentina/química , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Hidroxiprolina , Adesivos Dentinários/química , Água/metabolismo , Resistência à Tração
5.
Aging Cell ; 23(4): e14096, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38475908

RESUMO

The epidermis is a stratified epithelium that forms the outer layer of the skin. It is composed primarily of keratinocytes and is constantly renewed by the proliferation of stem cells and their progeny that undergo terminal differentiation as they leave the basal layer and migrate to the skin surface. Basal keratinocytes rest on a basement membrane composed of an extracellular matrix that controls their fate via integrin-mediated focal adhesions and hemidesmosomes which are critical elements of the epidermal barrier and promote its regenerative capabilities. The distribution of basal cells with optimal activity provides the basement membrane with its characteristic undulating shape; this configuration disappears with age, leading to epidermal weakness. In this study, we present an in-depth imaging analysis of basal keratinocyte anchorage in samples of human skin from participants across the age spectrum. Our findings reveal that skin aging is associated with the depletion of hemidesmosomes that provide crucial support for stem cell maintenance; their depletion correlates with the loss of the characteristic basement membrane structure. Atomic force microscopy studies of skin and in vitro experiments revealed that the increase in tissue stiffness observed with aging triggers mechanical signals that alter the basement membrane structure and reduce the extent of basal keratinocyte anchorage, forcing them to differentiate. Genomic analysis revealed that epidermal aging was associated with mechanical induction of the transcription factor Krüppel-like factor 4. The altered mechanical properties of tissue being a new hallmark of aging, our work opens new avenues for the development of skin rejuvenation strategies.


Assuntos
Epiderme , Pele , Humanos , Membrana Basal/metabolismo , Epiderme/metabolismo , Queratinócitos , Matriz Extracelular/metabolismo
6.
Int J Biol Macromol ; 265(Pt 2): 130845, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503376

RESUMO

Endometrial fibrosis leads to the destruction of endometrial function and affects reproductive performance. However, mechanisms underlying the development of endometrial fibrosis in sheep remain unclear. We use transcriptomic, proteomic, and metabolomic studies to reveal the formation mechanisms of endometrial fibrosis. The results showed that the fibrotic endometrial tissue phenotype presented fewer glands, accompanied by collagen deposition. Transcriptomic results indicated alterations in genes associated with the synthesis and degradation of extracellular matrix components, which alter metabolite homeostasis, especially in glycerophospholipid metabolism. Moreover, differentially expressed metabolites may play regulatory roles in key metabolic processes during fibrogenesis, including protein digestion and absorption, and amino acid synthesis. Affected by the aberrant genes, protein levels related to the extracellular matrix components were altered. In addition, based on Kyoto Encyclopedia of Genes and Genomes analysis of differentially expressed genes, metabolites and proteins, amino acid biosynthesis, glutathione, glycerophospholipid, arginine and proline metabolism, and cell adhesion are closely associated with fibrogenesis. Finally, we analyzed the dynamic changes in serum differential metabolites at different time points during fibrosis. Taken together, fibrosis development is related to metabolic obstacles in extracellular matrix synthesis and degradation triggered by disturbed gene and protein levels.


Assuntos
Multiômica , Proteômica , Animais , Ovinos , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Fibrose , Transcriptoma , Glicerofosfolipídeos/metabolismo , Aminoácidos/metabolismo
7.
Basic Clin Pharmacol Toxicol ; 134(5): 614-628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38426366

RESUMO

The brain extracellular matrix (ECM) has garnered increasing attention as a fundamental component of brain function in a predominantly "neuron-centric" paradigm. Particularly, the perineuronal nets (PNNs), a specialized net-like structure formed by ECM aggregates, play significant roles in brain development and physiology. PNNs enwrap synaptic junctions in various brain regions, precisely balancing new synaptic formation and long-term stabilization, and are highly dynamic entities that change in response to environmental stimuli, especially during the neurodevelopmental period. They are found mainly surrounding parvalbumin (PV)-expressing GABAergic interneurons, being proposed to promote PV interneuron maturation and protect them against oxidative stress and neurotoxic agents. This structural and functional proximity underscores the crucial role of PNNs in modulating PV interneuron function, which is critical for the excitatory/inhibitory balance and, consequently, higher-level behaviours. This review delves into the molecular underpinnings governing PNNs formation and degradation, elucidating their functional interactions with PV interneurons. In the broader physiological context and brain-related disorders, we also explore their intricate relationship with other molecules, such as reactive oxygen species and metalloproteinases, as well as glial cells. Additionally, we discuss potential therapeutic strategies for modulating PNNs in brain disorders.


Assuntos
Interneurônios , Parvalbuminas , Parvalbuminas/metabolismo , Interneurônios/metabolismo , Matriz Extracelular/metabolismo , Neurônios/metabolismo , Encéfalo/metabolismo
8.
Biomater Sci ; 12(8): 2136-2148, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38482883

RESUMO

Innovative bioengineering strategies utilizing extracellular matrix (ECM) based scaffolds derived from decellularized tissue offer new prospects for restoring damaged uterine tissue. Despite successful fertility restoration in small animal models, the translation to larger and more clinically relevant models have not yet been assessed. Thus, our study investigated the feasibility to use a 6 cm2 graft constructed from decellularized sheep uterine tissue, mimicking a future application to repair a uterine defect in women. Some grafts were also recellularized with fetal sheep bone marrow-derived mesenchymal stem cells (SF-MSCs). The animals were followed for six weeks post-surgery during which blood samples were collected to assess the systemic immune cell activation by fluorescence-activated cell sorting (FACS) analysis. Tissue regeneration was assessed by histology, immunohistochemistry, and gene expression analyses. There was a large intra-group variance which prompted us to implement a novel scoring system to comprehensively evaluate the regenerative outcomes. Based on the regenerative score each graft received, we focused our analysis to map potential differences that may have played a role in the success or failure of tissue repair following the transplantation therapy. Notably, three out of 15 grafts exhibited major regeneration that resembled native uterine tissue, and an additional three grafts showed substantial regenerative outcomes. For the better regenerated grafts, it was observed that the systemic T-cell subgroups were significantly different compared with the failing grafts. Hence, our data suggest that the T-cell response play an important role for determining the uterus tissue regeneration outcomes. The remarkable regeneration seen in the best-performing grafts after just six weeks following transplantation provides compelling evidence that decellularized tissue for uterine bioengineering holds great promise for clinically relevant applications.


Assuntos
Células-Tronco Mesenquimais , Engenharia Tecidual , Humanos , Feminino , Animais , Ovinos , Útero , Bioengenharia , Células-Tronco Mesenquimais/metabolismo , Matriz Extracelular/metabolismo , Tecidos Suporte
9.
J Biomed Mater Res B Appl Biomater ; 112(4): e35401, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520703

RESUMO

Hemorrhage is the second leading cause of death in patients under 46 years of age in the United States. Cessation of hemorrhage prevents hemorrhagic shock and tissue hypoxia. Controlling the bleed via direct pressure or tourniquet is often the first line of defense, but long-term care requires staples, hemostatic agents, or sealants that seal the vessel and restore blood flow. Here, we compare a new photocurable extracellular matrix sealant (pcECM) with low, medium, and high crosslink density formulations to a commercially available fibrin-based sealant, TISSEEL®. pcECM has potential uses in surgical and remote settings due to room temperature storage conditions and fast preparation time. Here, we determine if pcECM sealant can stop venous hemorrhage in a murine model, adhere to the wound site in vivo throughout the wound-healing process, and has the mechanical properties necessary for stopping hemorrhage. Adjusting pcECM crosslinking density significantly affected viscosity, swelling, burst strength, tensile strength, and elasticity of the sealant. 3-Dimensional ultrasound volume segmentations showed pcECM degrades to 17 ± 8% of its initial implant volume by day 28. Initially, local hemodynamic changes were observed, but returned close to baseline levels by day 28. Acute inflammation was observed near the puncture site in pcECM implanted mice, and we observed inflammatory markers at the 14-day explant for both sealants. pcECM and fibrin sealant successfully sealed the vessel in all cases, and consistently degraded over 14-28 days. pcECM is a durable sealant with tunable mechanical properties and possible uses in hemorrhage control and other surgical procedures.


Assuntos
Hemorragia , Adesivos Teciduais , Humanos , Camundongos , Animais , Hemorragia/prevenção & controle , Adesivo Tecidual de Fibrina/efeitos adversos , Cicatrização , Matriz Extracelular/metabolismo , Adesivos Teciduais/metabolismo
10.
ACS Nano ; 18(13): 9713-9735, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507590

RESUMO

Cancer-associated fibroblasts (CAFs) assist in breast cancer (BRCA) invasion and immune resistance by overproduction of extracellular matrix (ECM). Herein, we develop FPC@S, a photodynamic immunomodulator that targets the ECM, to improve the photodynamic immunotherapy for fibrotic BRCA. FPC@S combines a tumor ECM-targeting peptide, a photosensitizer (protoporphyrin IX) and an antifibrotic drug (SIS3). After anchoring to the ECM, FPC@S causes ECM remodeling and BRCA cell death by generating reactive oxygen species (ROS) in situ. Interestingly, the ROS-mediated ECM remodeling can normalize the tumor blood vessel to improve hypoxia and in turn facilitate more ROS production. Besides, upon the acidic tumor microenvironment, FPC@S will release SIS3 for reprograming CAFs to reduce their activity but not kill them, thus inhibiting fibrosis while preventing BRCA metastasis. The natural physical barrier formed by the dense ECM is consequently eliminated in fibrotic BRCA, allowing the drugs and immune cells to penetrate deep into tumors and have better efficacy. Furthermore, FPC@S can stimulate the immune system and effectively suppress primary, distant and metastatic tumors by combining with immune checkpoint blockade therapy. This study provides different insights for the development of fibrotic tumor targeted delivery systems and exploration of synergistic immunotherapeutic mechanisms against aggressive BRCA.


Assuntos
Neoplasias da Mama , Fibroblastos Associados a Câncer , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Matriz Extracelular/metabolismo , Imunoterapia , Fibrose , Microambiente Tumoral
11.
Circ Res ; 134(7): 931-949, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547250

RESUMO

The ECM (extracellular matrix) is a major component of the vascular microenvironment that modulates vascular homeostasis. ECM proteins include collagens, elastin, noncollagen glycoproteins, and proteoglycans/glycosaminoglycans. ECM proteins form complex matrix structures, such as the basal lamina and collagen and elastin fibers, through direct interactions or lysyl oxidase-mediated cross-linking. Moreover, ECM proteins directly interact with cell surface receptors or extracellular secreted molecules, exerting matricellular and matricrine modulation, respectively. In addition, extracellular proteases degrade or cleave matrix proteins, thereby contributing to ECM turnover. These interactions constitute the ECM interactome network, which is essential for maintaining vascular homeostasis and preventing pathological vascular remodeling. The current review mainly focuses on endogenous matrix proteins in blood vessels and discusses the interaction of these matrix proteins with other ECM proteins, cell surface receptors, cytokines, complement and coagulation factors, and their potential roles in maintaining vascular homeostasis and preventing pathological remodeling.


Assuntos
Proteínas da Matriz Extracelular , Matriz Extracelular , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Colágeno/metabolismo , Elastina/metabolismo , Homeostase , Receptores de Superfície Celular/metabolismo
12.
Int J Nanomedicine ; 19: 2957-2972, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549840

RESUMO

Introduction: Nano-mesoporous bioactive glass and RGD peptide-coated collagen membranes have great potential in wound healing. However, the application of their compound has not been further studied. Our purpose is to prepare a novel bioactive collagen scaffold containing both NMBG stent and adhesion peptides (BM), which then proves its promising prospect the assessment of physical properties, biocompatibility, GSK-3ß/ß-catenin signaling axis and toxicological effects. Methods: The structural and morphological changes of BM were analyzed using scanning electron microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). In vivo, wound healing of BM was assessed in SD rats through dynamic monitoring and calculation of wound healing rate. Immunohistofluorescence (IHF), H&E, and Masson staining were utilized; in vitro, primary cell culture, and a variety of assays including CCK-8, Transwell, Scratch, Immunocytofluorescence (ICF), and Western blot (WB) were performed, both for morphology and molecular analysis. Results and Discussion: Preparation of BM involved attaching NMBG to RGD-exposed collagen while avoiding the use of toxic chemical reagents. BM exhibited a distinctive superficial morphology with increased Si content, indicating successful NMBG attachment. In vivo studies on SD rats demonstrated the superior wound healing capability of BM, as evidenced by accelerated wound closure, thicker epithelial layers, and enhanced collagen deposition compared to the NC group. Additionally, BM promoted skin fibroblast migration and proliferation, possibly through activation of the GSK-3ß/ß-catenin signaling axis, which was crucial for tissue regeneration. This study underscored the potential of BM as an effective wound-healing dressing. Conclusion: A new method for synthesizing ECM-like membranes has been developed using nano-mesoporous bioactive glass and collagen-derived peptides. This approach enhances the bioactivity of biomaterials through surface functionalization and growth factor-free therapy.


Assuntos
Biomimética , beta Catenina , Ratos , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , beta Catenina/metabolismo , Ratos Sprague-Dawley , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos , Proliferação de Células , Peptídeos/farmacologia
13.
Mol Metab ; 82: 101912, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458566

RESUMO

OBJECTIVE: Skeletal muscle plasticity and remodeling are critical for adapting tissue function to use, disuse, and regeneration. The aim of this study was to identify genes and molecular pathways that regulate the transition from atrophy to compensatory hypertrophy or recovery from injury. Here, we have used a mouse model of hindlimb unloading and reloading, which causes skeletal muscle atrophy, and compensatory regeneration and hypertrophy, respectively. METHODS: We analyzed mouse skeletal muscle at the transition from hindlimb unloading to reloading for changes in transcriptome and extracellular fluid proteome. We then used qRT-PCR, immunohistochemistry, and bulk and single-cell RNA sequencing data to determine Mustn1 gene and protein expression, including changes in gene expression in mouse and human skeletal muscle with different challenges such as exercise and muscle injury. We generated Mustn1-deficient genetic mouse models and characterized them in vivo and ex vivo with regard to muscle function and whole-body metabolism. We isolated smooth muscle cells and functionally characterized them, and performed transcriptomics and proteomics analysis of skeletal muscle and aorta of Mustn1-deficient mice. RESULTS: We show that Mustn1 (Musculoskeletal embryonic nuclear protein 1, also known as Mustang) is highly expressed in skeletal muscle during the early stages of hindlimb reloading. Mustn1 expression is transiently elevated in mouse and human skeletal muscle in response to intense exercise, resistance exercise, or injury. We find that Mustn1 expression is highest in smooth muscle-rich tissues, followed by skeletal muscle fibers. Muscle from heterozygous Mustn1-deficient mice exhibit differences in gene expression related to extracellular matrix and cell adhesion, compared to wild-type littermates. Mustn1-deficient mice have normal muscle and aorta function and whole-body glucose metabolism. We show that Mustn1 is secreted from smooth muscle cells, and that it is present in arterioles of the muscle microvasculature and in muscle extracellular fluid, particularly during the hindlimb reloading phase. Proteomics analysis of muscle from Mustn1-deficient mice confirms differences in extracellular matrix composition, and female mice display higher collagen content after chemically induced muscle injury compared to wild-type littermates. CONCLUSIONS: We show that, in addition to its previously reported intracellular localization, Mustn1 is a microprotein secreted from smooth muscle cells into the muscle extracellular space. We explore its role in muscle ECM deposition and remodeling in homeostasis and upon muscle injury. The role of Mustn1 in fibrosis and immune infiltration upon muscle injury and dystrophies remains to be investigated, as does its potential for therapeutic interventions.


Assuntos
60526 , Músculo Esquelético , Animais , Feminino , Humanos , Camundongos , Matriz Extracelular/metabolismo , Hipertrofia/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Miócitos de Músculo Liso/metabolismo
14.
Biomed Mater ; 19(3)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38518362

RESUMO

There is currently an urgent need to develop engineered scaffolds to support new adipose tissue formation and facilitate long-term maintenance of function and defect repair to further generate prospective bioactive filler materials capable of fulfilling surgical needs. Herein, adipose regeneration methods were optimized and decellularized adipose tissue (DAT) scaffolds with good biocompatibility were fabricated. Adipose-like tissues were reconstructed using the DAT and 3T3-L1 preadipocytes, which have certain differentiation potential, and the regenerative effects of the engineered adipose tissuesin vitroandin vivowere explored. The method improved the efficiency of adipose removal from tissues, and significantly shortened the time for degreasing. Thus, the DAT not only provided a suitable space for cell growth but also promoted the proliferation, migration, and differentiation of preadipocytes within it. Following implantation of the constructed adipose tissuesin vivo, the DAT showed gradual degradation and integration with surrounding tissues, accompanied by the generation of new adipose tissue analogs. Overall, the combination of adipose-derived extracellular matrix and preadipocytes for adipose tissue reconstruction will be of benefit in the artificial construction of biomimetic implant structures for adipose tissue reconstruction, providing a practical guideline for the initial integration of adipose tissue engineering into clinical medicine.


Assuntos
Tecido Adiposo , Tecidos Suporte , Tecidos Suporte/química , Estudos Prospectivos , Matriz Extracelular/metabolismo , Diferenciação Celular , Engenharia Tecidual
15.
Cancer Cell ; 42(4): 662-681.e10, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38518775

RESUMO

Intratumor morphological heterogeneity of pancreatic ductal adenocarcinoma (PDAC) predicts clinical outcomes but is only partially understood at the molecular level. To elucidate the gene expression programs underpinning intratumor morphological variation in PDAC, we investigated and deconvoluted at single cell level the molecular profiles of histologically distinct clusters of PDAC cells. We identified three major morphological and functional variants that co-exist in varying proportions in all PDACs, display limited genetic diversity, and are associated with a distinct organization of the extracellular matrix: a glandular variant with classical ductal features; a transitional variant displaying abortive ductal structures and mixed endodermal and myofibroblast-like gene expression; and a poorly differentiated variant lacking ductal features and basement membrane, and showing neuronal lineage priming. Ex vivo and in vitro evidence supports the occurrence of dynamic transitions among these variants in part influenced by extracellular matrix composition and stiffness and associated with local, specifically neural, invasion.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Membrana Basal/metabolismo , Sistema Nervoso
16.
ACS Biomater Sci Eng ; 10(4): 2212-2223, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38467019

RESUMO

Macrophages are innate immune cells that interact with complex extracellular matrix environments, which have varied stiffness, composition, and structure, and such interactions can lead to the modulation of cellular activity. Collagen is often used in the culture of immune cells, but the effects of substrate functionalization conditions are not typically considered. Here, we show that the solvent system used to attach collagen onto a hydrogel surface affects its surface distribution and organization, and this can modulate the responses of macrophages subsequently cultured on these surfaces in terms of their inflammatory activation and expression of adhesion and mechanosensitive molecules. Collagen was solubilized in either acetic acid (Col-AA) or N-(2-hydroxyethyl)piperazine-N'-ethanesulfonic acid (HEPES) (Col-HEP) solutions and conjugated onto soft and stiff polyacrylamide (PA) hydrogel surfaces. Bone marrow-derived macrophages cultured under standard conditions (pH 7.4) on the Col-HEP-derived surfaces exhibited stiffness-dependent inflammatory activation; in contrast, the macrophages cultured on Col-AA-derived surfaces expressed high levels of inflammatory cytokines and genes, irrespective of the hydrogel stiffness. Among the collagen receptors that were examined, leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) was the most highly expressed, and knockdown of the Lair-1 gene enhanced the secretion of inflammatory cytokines. We found that the collagen distribution was more homogeneous on Col-AA surfaces but formed aggregates on Col-HEP surfaces. The macrophages cultured on Col-AA PA hydrogels were more evenly spread, expressed higher levels of vinculin, and exerted higher traction forces compared to those of cells on Col-HEP. These macrophages on Col-AA also had higher nuclear-to-cytoplasmic ratios of yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), key molecules that control inflammation and sense substrate stiffness. Our results highlight that seemingly slight variations in substrate deposition for immunobiology studies can alter critical immune responses, and this is important to elucidate in the broader context of immunomodulatory biomaterial design.


Assuntos
Colágeno , Matriz Extracelular , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Fatores de Transcrição/metabolismo , Hidrogéis/metabolismo , Citocinas/metabolismo
17.
Cells ; 13(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474385

RESUMO

Increased production of extracellular matrix is a necessary response to tissue damage and stress. In a normal healing process, the increase in extracellular matrix is transient. In some instances; however, the increase in extracellular matrix can persist as fibrosis, leading to deleterious alterations in organ structure, biomechanical properties, and function. Indeed, fibrosis is now appreciated to be an important cause of mortality and morbidity. Extensive research has illustrated that fibrosis can be slowed, arrested or even reversed; however, few drugs have been approved specifically for anti-fibrotic treatment. This is in part due to the complex pathways responsible for fibrogenesis and the undesirable side effects of drugs targeting these pathways. Natural products have been utilized for thousands of years as a major component of traditional medicine and currently account for almost one-third of drugs used clinically worldwide. A variety of plant-derived compounds have been demonstrated to have preventative or even reversal effects on fibrosis. This review will discuss the effects and the underlying mechanisms of some of the major plant-derived compounds that have been identified to impact fibrosis.


Assuntos
Matriz Extracelular , Compostos Fitoquímicos , Humanos , Fibrose , Matriz Extracelular/metabolismo , Compostos Fitoquímicos/farmacologia
18.
Sci Adv ; 10(11): eadk6906, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38478620

RESUMO

Tissue-resident macrophages play important roles in tissue homeostasis and repair. However, how macrophages monitor and maintain tissue integrity is not well understood. The extracellular matrix (ECM) is a key structural and organizational component of all tissues. Here, we find that macrophages sense the mechanical properties of the ECM to regulate a specific tissue repair program. We show that macrophage mechanosensing is mediated by cytoskeletal remodeling and can be performed in three-dimensional environments through a noncanonical, integrin-independent mechanism analogous to amoeboid migration. We find that these cytoskeletal dynamics also integrate biochemical signaling by colony-stimulating factor 1 and ultimately regulate chromatin accessibility to control the mechanosensitive gene expression program. This study identifies an "amoeboid" mode of ECM mechanosensing through which macrophages may regulate tissue repair and fibrosis.


Assuntos
Matriz Extracelular , Macrófagos , Matriz Extracelular/metabolismo , Macrófagos/metabolismo , Citoesqueleto , Integrinas/metabolismo , Transdução de Sinais
19.
Methods Mol Biol ; 2783: 159-165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478231

RESUMO

Hydrogels are considered a viable in vitro alternative to monolayer cultures. They provide quintessential characteristics for in vitro studies including biocompatibility, biodegradability, viscoelasticity, hydrophilicity, and low toxicity. Furthermore, many provide necessary extracellular matrix proteins and architecture to support cell growth, proliferation, differentiation, and migration. Synthetic and natural polymer-derived hydrogels both demonstrate positive qualities; however, natural hydrogels have attracted great interest due to their clinical relevancy. In particular, decellularized tissue-derived hydrogels have been identified as a significant resource for tissue engineering applications by mimicking the composition and architecture of their tissue of origin.The use of adipose tissue as a hydrogel has become more prevalent because of limitless resources and accessibility of the tissue itself. Obatala Sciences has established a manufacturing protocol for human decellularized adipose tissue (hDAT) using a series of steps including mechanical disruption, chemical disruption with N-Lauroylsarcosine, and enzymatic digestion with pepsin and hydrochloric acid.


Assuntos
Hidrogéis , Tecidos Suporte , Humanos , Hidrogéis/química , Tecidos Suporte/química , Matriz Extracelular/metabolismo , Engenharia Tecidual/métodos , Diferenciação Celular
20.
Methods Mol Biol ; 2783: 167-176, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38478232

RESUMO

Decellularized human-adipose tissue (hDAT) can serve as an alternative to two-dimensional monolayer culture and current ECM hydrogels due to its unlimited availability and cytocompatibility. A major hurdle in the clinical translation and integration of hDAT and other hydrogels into current in vitro culture processes is adherence to current good manufacturing practices (cGMP). Transferring of innovative technologies, including hydrogels, requires the establishing standardized protocols for quality assurance and quality control (QA/QC) of the material.Integration of basic characterization techniques, including physiochemical characterization, structural/morphological characterization, thermal and mechanical characterization, and biological characterization, in addition to the reduction of batch-to-batch variability and establishment of proper sterilization, storage, and fabrication processes verifies the integrity of the hydrogel. Obatala Sciences has established a characterization protocol that involves a series of assays including the evaluation of gelation properties, protein content, glycosaminoglycan content, soluble collagen content, and DNA content of hDAT.


Assuntos
Matriz Extracelular , Hidrogéis , Humanos , Hidrogéis/química , Matriz Extracelular/metabolismo , Colágeno/metabolismo , Glicosaminoglicanos/metabolismo , Controle de Qualidade , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...